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A crucial step in the modeling of a system is to determine the values of the parameters to use in the
model. In this paper we assume that we have a set of measurements collected from an operational sys-
tem, and that an appropriate model of the system (e.g., based on queueing theory) has been developed.
Not infrequently proper values for certain parameters of this model may be difficult to estimate from
available data (because the corresponding parameters have unclear physical meaning or because they
cannot be directly obtained from available measurements, etc.). Hence, we need a technique to determine
the missing parameter values, i.e., to calibrate the model.
As an alternative to unscalable “brute force” technique, we propose to view model calibration as a non-
linear optimization problem with constraints. The resulting method is conceptually simple and easy to
implement. Our contribution is twofold. First, we propose improved definitions of the “objective function”
to quantify the “distance” between performance indices produced by the model and the values obtained
from measurements. Second, we develop a customized derivative-free optimization (DFO) technique
whose original feature is the ability to allow temporary constraint violations. This technique allows us to
solve this optimization problem accurately, thereby providing the “right” parameter values. We illustrate
our method using two simple real-life case studies.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Predicting the behavior of information systems is a key issue in
computer analysis. The predictions may be used to design a new
system, as well as to forecast performance impact of changes in hard-
ware resources and/or applicationworkload (capacity planning). Pre-
dictions can for instance estimate how increasing the utilization of
an Ethernet network affects the average delay experienced by trans-
mitted packets. Another case in point is to forecast the performance
impact of a new storage device on the performance of the I/O sub-
system.

A possible way to address the effect of system or workload
changes is to implement the corresponding scenario in the actual
system and experimentally assess the resulting impact. Such a so-
lution requires that the system be adequately instrumented, which
can be both complex and costly. Additionally, in some instances,
the instrumentation and measurement itself can drastically alter
the performance of an operational system and compromise its reli-
ability. For these reasons, engineers frequently look for alternative
solutions.
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Analytical models provide a non-intrusive, reproducible and con-
trolled way to forecast the behavior of a system. Although the mod-
els may largely differ in their formalism, complexity, accuracy and
solution method, the modeling process can always be decomposed
into two steps: a qualitative and a quantitative step. First, a model is
designed in order to capture the essential characteristics of the sys-
tem. This model can rely on predefined formalisms such as queueing
networks, Markov chains or Petri nets, or can simply be based on a
set of ad hoc mathematical equations. For example, a Web server can
be represented as a queueing system [5]. Once this qualitative step
is performed, it is necessary to determine the values of the model
parameters so that the model and the system match quantitatively.
This adjustment of the values of model parameters is referred to as
the calibration step. Of course, both steps are correlated and the fail-
ure of either can invalidate the entire model.

In this paper, we focus on the calibration step of a model of an
existing system, i.e., we assume that a potential model derived from
queueing theory, has already been developed. The values of some of
the model parameters can be determined directly from the knowl-
edge of the system, e.g., from technical specifications or empirical ob-
servations. We denote this set of specified parameters by (�1, . . . ,�m).
The values of some other parameters of the model may be unknown
to the analyst, and must be somehow determined. We denote these
unspecified parameters by (�1, . . . ,�n), and we refer to a model that
includes such unspecified parameters as an incomplete model.
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The estimation of the unspecified parameters (�1, . . . ,�n), requires
additional knowledge that is typically related to measurements. In
this paper, we consider that the system under study has been mea-
sured at different times corresponding to different levels of the
workload. We assume a set of N measurement points denoted by
(M1, . . . ,MN). To each Mi corresponds a specific, but possibly un-
known, level of the workload (e.g., a given arrival rate of the incom-
ing requests or a given number of sources of requests). Mi is a vector
of p performance parameters. In computer engineering, typical per-
formance parameters are the average throughput, the loss probabil-
ity, the expected sojourn time and the mean queue length, denoted
by X̄mes, Lmes, R̄mes, and Q̄mes, respectively. Taking again the example
of an I/O controller, a measurement point can be Mi = (X̄mes

i , R̄mes
i ),

relating the expected sojourn time of a request in the system to the
average number of requests served per time unit by the controller.

We present a general, easy-to-use and efficient method to de-
rive the missing values of model parameters (�1, . . . ,�n), such that
the resulting model provides the “best” fit to the N measurement
points. The problem is formulated as an optimization problem. We
describe and investigate both traditional and enhanced original def-
initions of the objective function used to quantify the goodness of
fit of the model, with a particular emphasis on practical aspects.
We give a high-level description of an original derivative-free op-
timization (DFO) algorithm we propose to solve this optimization
problem. This algorithm is based on a quadratic approximation of
the objective function and provides an easy and efficient handling
of the constraints imposed on the search for the optimal solution.
The proposed DFO technique is reasonably simple and succeeds in
calibrating queueing models with less than ten missing parameters.

The paper is organized as follows. In Section 2, we present two
simple case studies derived from real-life systems. We use these ex-
amples throughout our paper to illustrate the proposed method. In
Section 3, we discuss possible definitions of the objective function
and we formulate the search for the unknown values of model pa-
rameters as an non-linear optimization problem. Section 4 is devoted
to the derivative-free optimization algorithm used in the calibration
step. Numerical results pertaining to the two case studies are pre-
sented in Section 5.

2. Case studies

Throughout this paper we consider two case studies derived from
real-life situations. Their complete analysis not only provides exam-
ples of successful applications of our “high-level” method, but also
serves as paradigm to understand the description of the proposed
approach. In both cases, the system under study has been measured
and an appropriate but incomplete model has been proposed to rep-
resent its behavior, leaving unspecified the values of some of the
model parameters. These unspecified parameters values are denoted
in this paper as a set (�1, . . . ,�n). In order to be able to effectively
use the model, the values of the unspecified parameters must be
estimated from system measurements.

2.1. Case study A: Web server

The first case study is extracted from the paper of Cao et al. [5]
and relates to the performance of an Apache Web server. The au-
thors present several sets of measurements corresponding to dif-
ferent sizes of requests. In particular, they measure the expected
sojourn time (or response time) R̄mes experienced by an incoming
request for increasing values of the requests throughput X̄mes. We
show in Table 1 one of these sets.

Cao et al. [5] model their system as a simple M/G/1/K*PS queue
[9]. In this queue, customers (job requests) arrive according to a
Poisson process, and receive collectively service (time needed to

Table 1
Performance measurements of a Web server.

X̄mes (req/s) R̄mes (s)

80.0 1.89 × 10−02

100.0 3.77 × 10−02

120.0 5.66 × 10−02

140.0 2.64 × 10−01

140.4 1.43 × 10+00

Table 2
Performance measurements of a database system.

S R̄mes (s)

1 1.53 × 10−03

2 1.67 × 10−03

4 2.52 × 10−03

process a request) according to the processor sharing policy. A new
request will be rejected if the maximum number of requests allowed
at the server, K, is reached. Classical results on robustness show
that the average performance of the queue depends on the service
distribution only through its average value �. The mean sojourn time
R̄th, the average throughput X̄th, and the blocking probability Prth,
have closed-form expressions [5,9] that, beside the offered load, only
depend on the size K of the queue, and the average service time �.
No specific value for these two parameters can be derived directly
from the knowledge of the system. Cast in our formalism, there are
two unspecified parameters (�1,�2) = (�,K) whose values must be
estimated from the measurements. While the authors of the paper
estimated their values using a “brute force” exhaustive approach,
we use this case study to show, step-by-step, how our approach can
manage efficiently the calibration of this model.

2.2. Case study B: machine repairman

The second case study is extracted from a database system bench-
marked with varying numbers of users. We denote by S the num-
ber of users. Each user can be viewed as a single and independent
request source and the whole system is represented as a machine
repairman model [9].

Table 2 gives the expected sojourn time R̄mes spent by a request
in the system, when there are currently S = 1, 2 or 4 sources of
requests. Not surprisingly, as the number of users increases so does
the mean response (sojourn) time.

Assuming exponentially distributed “machine repair” and
“machine up” times, the machine repairman queueing system has
four parameters: the total number of users S, the number of servers
C, the mean service time per request ts and the idle request gener-
ation rate �. Such a machine repairman model has a simple closed-
form solution [9]. In our case, the number of users S is given but
we have no direct knowledge of the remaining model parameters
so that (�1,�2,�3) correspond to (�,C, ts). As shown in the following
sections, our calibration method provides an automatic way to find
appropriate values for the three unspecified parameters allowing
the machine repairman model to match the measurements.

Many queueing models, such as the ones just described, may
have both discrete and continuous parameters. This creates a diffi-
culty since many of the existing optimization methods require all
the parameters of the objective function to be either continuous
or discrete. We elect to treat all model parameters as continuous
by relaxing the discrete constraints on the corresponding parame-
ters. To this aim, we define “intermediate models” in which discrete
parameters are replaced by their corresponding continuous exten-
sions. Such intermediate models coincide with “standard” models
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when their “artificial” extension parameters have integer values. As
an example, in case study B, C can be treated as a real number, e.g.,
C = 2.87, just by redefining the departure rates of the associated
birth and death process as follows: from state 1 to state 0, the rate
of service is �, from state 2 to state 1, the rate is 2�, and from any
states n>2 to n − 1, the rate is 2.87�. Obviously, this intermediate
machine repairman model coincides with the traditional queueing
model when C is an integer. Sometimes the intermediate models
may require a more involved derivation. In case study A, in order
to define the M/G/1/K*PS queue with a non-integer value of K, e.g.,
K=7.35, one must rearrange the associated Markov chain by adding
a new state K + 1 and adjusting the arrival rate between state K
and state K + 1 proportionally to K − �K�, e.g., 0.35�. Note that, if
only “classical” models (with discrete values for the appropriate pa-
rameters) are required following the calibration, we can evaluate all
the models obtained from the intermediate model found, rounding
the artificial continuous parameters to integers, and keep the one
yielding the best results. In certain cases, it may be preferable to
perform a further optimization search starting from each rounded
set of integer parameters that are kept constant, and run again the
optimization technique on the remaining continuous parameters. It
is worthwhile noting that these further searches imply only a small
additional complexity as the number of parameters of the search is
smaller and the starting point is likely to be close to the optimum.

Let us finally emphasize that we chose these two case studies to
illustrate our high-level modeling approach for several reasons. First,
together they cover the case where the workload is included in the
measurements and the case where the workload is unknown, and
thus show that themethod can be used in both situations. Second, the
analytical models associated with the two case studies correspond
to different queueing models, the first one being a simple “open”
queue and the second one being a closed queuing network. Lastly,
both models have discrete parameters, which highlights the ability
of our method to handle them.

3. Formulation of the optimization problem

As stated before, analytical models may include both specified
and unspecified parameters, denoted by (�1, . . . ,�m) and (�1, . . . ,�n),
respectively. By definition, the values of the former parameters are
supposed to be known. Hence, only the values of the parameters
(�1, . . . ,�n) have to be estimated. In this section, we make more
precise the notion of the right values for the parameters (�1, . . . ,�n)
and we formulate their search as an optimization problem.

3.1. The right calibration

Any n-tuple of values for (�1, . . . ,�n) specifies a possible calibra-
tion of the model under consideration. In the case study A, where
the model is an M/G/1/K*PS queue, the two unspecified parameters,
�1 and �2, are the mean service time � and the size K of the buffer.
The expected sojourn time R̄th(�) of a request in the queue, as well
as the attained throughput X̄th(�), also depend on the load �, i.e., the
average number of requests that are submitted to the system per
unit time. Let us assume that (�, K) is equal to (6.25 × 10−3, 250).
Given that calibration, we depict in Fig. 1 the parametric function
(X̄th(�), R̄th(�)) as well as the measurement points for the Apache
Web server. As can be observed, the performance curve obtained
from the model is relatively far from measurement data.

We designate as the “best” values for the parameters (�1, . . . ,�n),
the n-tuple that minimizes the deviation between the behavior of
the system captured by the measurements, and the performance de-
rived from the model with parameters (�1, . . . ,�n). We thus need
to define a function that quantifies the deviation between the mea-
surements and the values produced by the model. We refer to this

Fig. 1. A possible calibration for the M/G/1/K*PS.

function as the objective function, and denote it by �(�1, . . . ,�n) (or
just � for the sake of simplicity). The search for the right calibration
can then be expressed as the search of the n-tuple (�1, . . . ,�n) that
minimizes �. The issues related to the definition of � are addressed
in the remainder of this section, while the search procedure is de-
veloped in Section 4.

3.2. Constraints

The unspecified parameters of the model, (�1, . . . ,�n), are sub-
jected to three types of constraints.

First, we have simple feasibility constraints: n-tuples (�1, . . . ,�n)
are obviously unfeasible as they include non-sensical parameter val-
ues. For instance, a mean service time may not be negative. Con-
straints of this type are usually linear and restrict the domain of
definition of �.

Constraints of the second type are related to the measurements
and ensure the consistency of the queueing model with the mea-
surement points.1 Unlike for the first set of constraints, when these
constraints are violated, the model has a meaning and the objec-
tive function � can be evaluated. This feature is actually exploited
by our optimization algorithm (see Section 4). In practice, most of
these constraints come from the theoretical bounds on the perfor-
mance parameters of the queueing model. For instance, in case study
A, the average sojourn time of a customer in the M/G/1/K*PS queue,
for any load �, is obviously greater than � and lower than K�. The
model with a given set of parameters (�,K), is thus inconsistent with
the measurements if at least one of the sojourn times measured on
the Apache Web server falls outside the range [�,K�]. Similar con-
straints can be derived for all performance parameters. As an ex-
ample, for the expected throughput, the model with (�1, . . . ,�n) will
be inconsistent with the measurements if its saturation threshold is
such that the model cannot reach at least one of the measured val-
ues (i.e., some measured throughput values exceed the maximum
value of the throughput attainable in the model). Most of these con-
straints are not linear. Note that because of possible measurement
uncertainties and biases, we may need to relax to some degree these
constraints. Constraints of this second type will be listed in Section
5 for both case studies A and B.

Constraints of the third type may arise from a partial knowledge
of the system. Indeed, one may know that a given parameter �i
although not known directly, must lie within a given range of values.

1 If none of the possible model calibrations meet these constraints, it probably
means that the queueing model is inappropriate.

Please cite this article as: Begin T, et al. A DFO technique to calibrate queueing models, Computers and Operations Research (2009),
doi:10.1016/j.cor.2009.04.020

http://dx.doi.org/10.1016/j.cor.2009.04.020


4 T. Begin et al. / Computers & Operations Research ( ) --

ARTICLE IN PRESS

Since many of our constrains are not linear, the search for the
right calibration becomes a non-linear optimization problem.

3.3. Definition of the objective function

There are several ways to define the objective function �, leading
to potentially different model calibrations. The definition of an ade-
quate objective function is indeed a crucial step. In this subsection,
we suggest a step-by-step method to define a function � adequate
for a large class of queueing systems. We split the problem into two
independent subproblems. We first define coupled points, by associ-
ating with each measurement point a corresponding point obtained
from the model. Then we use these coupled points together with the
measurement points to define suitable objective functions.

3.3.1. The coupled points
The goal of the objective function � is to measure the devia-

tion between the model calibrated by a given set of parameter val-
ues (�1, . . . ,�n) and the corresponding measurements. Although the
general idea may seem simple enough, in practice it is not always
straightforward to define a measure of the distance between the re-
sults of the model (which could be viewed as a curve as in Fig. 1)
and the discrete set of measurement points. We propose to asso-
ciate with each measurement point Mi, a coupled point denoted by
Ci on the model curve. There are several ways to define such coupled
points, each of which corresponds to a given value of the workload.

For the sake of generality,we view the measurement points Mi
and the coupled points Ci as vectors of p performance parameters:
Mi = (Pmes

i,1 , . . . , Pmes
i,p ) and Ci = (Pthi,1, . . . , P

th
i,p),where Pmes

i,k and Pthi,k denote
the value of the kth performance parameter coming from the mea-
surements and the model. We denote by Lmes

i (resp. Lthi ),the workload
level corresponding to Mi (resp. Ci). As mentioned before,workloads
Lmes
i can be known (i.e.,included or related to the set of specified
parameters) or unknown,and can be expressed as an arrival rate,a
number of sources or a source intensity. Depending on whether the
workloads are known or not,we select the coupled points as follows:

• Known workloads. If the workloads Lmes
i are known, we propose,

quite naturally, to select the coupled points such that Lthi = Lmes
i .

In other words, coupled point Ci represents the performance in-
dices obtained from the model for the same workload as the one
used to measure Mi. Case study B provides an example of such a
simple situation. Here, a measurement point comprises only the
expected sojourn time of a request, Mi = (R̄mes

i ), and the workload
level corresponds to the known number of sources, Lmes

i = Si. Each
coupled point Ci = (R̄thi ) is thus obtained by evaluating the model
with the same number of sources, Lthi = Si.

• Unknown workloads.
◦ The closest point. When the Lmes

i are unknown, the Ci can no
more be defined as having the same workload as the Mi. A
possible alternative is to select Ci as the “closest” point to Mi
on the model curve according to some mathematical distance
(e.g., Euclidean norm). In other words, the Ci are selected so
that ‖Mi,Ci‖ is as small as possible. This scheme, together with
the Euclidean metric defined in the next section, corresponds
to the least squares method [1,3,5,17]. While frequently applied
when one deals with the calibration of a queueing model, this
method has several drawbacks. First, the choice of the coupled
points obviously depends on the units in which the performance
parameters are expressed. Second, for a given queueing model,
the search for the closest coupled point can be a difficult task, as
one must find the value of the workload level Lthi that minimizes
the distance between the resulting Ci and Mi. Such an approach
is illustrated on Fig. 2 for case study A, where Mi = (X̄mes

i , R̄mes
i ).

Theoretical performances of a model
Measurement points
Coupled points

Fig. 2. The coupled point is the closest point from the measurements.

Theoretical performances of a model
Measurement points
Coupled points

Fig. 3. The coupled point has a common feature with the measurements.

◦ Common value for a performance parameter. Another possible
way to select the coupled points is to define Ci as having one
of its performance parameters, referred as to the criterion pa-
rameter, equal to the corresponding measured performance pa-
rameter in Mi. If Pmes

k is chosen as the criterion parameter, the
Ci are selected so that Pthi,k = Pmes

i,k , requiring to find the value of
the workload that generates this equality. Note that this search
for such a value of the workload is usually much easier than
trying to determine the closest point, as it only involves one per-
formance parameter, and, for most queueing systems, perfor-
mance parameters are monotonously increasing or decreasing
functions of the load. The search can thus easily be performed
using a simple bisection. To illustrate this scheme, Fig. 3 shows
case study A where X̄ is chosen as the criterion parameter. Here,
the Ci are couples (X̄th

i , R̄thi ) such that X̄th
i = X̄mes

i .

3.3.2. A metric for the deviation
Once the coupled points are chosen, we need a metric to quantify

the deviation between the model curve (sampled by the Ci) and the
measurement points (the Mi).

• An Euclidian metric. The easiest is to sum the distance between all
couples (Mi,Ci), using any mathematical norm, e.g., the Euclidian
distance

� =
N∑
i=1

‖Mi,Ci‖ =
N∑
i=1

√√√√ p∑
k=1

(Pmes
i,k − Pthi,k)

2 (1)

Such a definition for � has the main drawback to potentially sum
together terms with different units, making it difficult to ensure
equity between the various performance parameters. This short-
coming may cause severe unfairness when assessing the goodness
of fit of a given model.
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For the example of case study A, the Euclidian metric results in
the following definition for the objective function:

� =
N∑
i=1

√
(X̄mes

i − X̄th
i )2 + (R̄mes

i − R̄thi )2 (2)

• A multicriterion metric. A more consistent metric is to evaluate
and sum separately the deviation for each performance parame-
ter, avoiding the drawbacks of the Euclidian metric. A weight fac-
tor �k is associated with each performance parameter, and allows
to emphasize some of them in the metric. The definition of the
objective function becomes

� =
p∑

k=1

�k
N∑
i=1

|Pmes
i,k − Pthi,k| (3)

For the example of case study A and an equal importance of both
performance parameters X̄ and R̄ (e.g., all �k = 1), we get

� =
N∑
i=1

(|X̄mes
i − X̄th

i | + |R̄mes
i − R̄thi |) (4)

Note that when the coupled points Ci are selected so as to have
a common performance parameter value with the Mi, then one
term in (3) becomes obviously null. In case study A, if X̄ is set as
the criterion parameter, � simply becomes

� =
N∑
i=1

|R̄mes
i − R̄thi | (5)

3.3.3. Refinements of the metric
So far, the definitions of � given in (1) and (3) are based only on

the absolute deviations between the performance parameters of the
measurement points and the coupled points. However, quantifying
only absolute deviations may not be adequate in certain cases. In the
context of queueing systems, the performance indices may exhibit
largely different values from one measurement point to another. In
case study A, for example, the R̄mes

i vary from 19ms up to 1430ms
and, clearly, a deviation of e.g., 10ms with R̄thi does not have the
same impact on these two very different values. Summing absolute
deviations may give an excessive impact to relatively moderate de-
viations occurring at large values of R̄. Conversely, summing only
relative deviations may lead to an excessive impact for small devia-
tions on small values of R̄. To address these two potential problems,
we take into account both relative and absolute deviations in the
definition of �. A parameter, 	, with values between 0 and 1 allows
to control the weight of the relative and absolute contribution. As
discussed in Section 5.3, we recommend to use a value of 0.5. With
this refinement, the multicriterion definition of � becomes

� =
p∑

k=1

�k
N∑
i=1

(
	

|Pmes
i,k − Pthi,k|
P̂mes
k

+ (1 − 	)
|Pmes

i,k − Pthi,k|
Pmes
i,k

)
(6)

where P̂mes
k =∑N

i=1 P
mes
i,k /N is the arithmetic average of the kth mea-

sured performance parameters.
Another possible refinement is related to the uncertainty inherent

in the measurements. A measurement point in which the analyst
has a low level of confidence should have a smaller impact on �
than a measurement point associated with a high level of confidence.
We accomplish this by assigning to each measurement point Mi a
weight factor wi to reflect the level of confidence associated with
the measure

� =
p∑

k=1

�k
N∑
i=1

wi

(
	

|Pmes
i,k − Pthi,k|
P̂mes
k

+ (1 − 	)
|Pmes

i,k − Pthi,k|
Pmes
i,k

)
(7)

Error criterion δ

Theoretical performances of a model
Measurement points
Coupled points

Fig. 4. An area-based function for �.

Note that weight factors wi can additionally be used to favor a par-
ticular domain of application of the resulting model (e.g., a specific
range of workload). Clearly, if all measurements have similar uncer-
tainty levels and if there is no need to emphasize a particular work-
load region, all wi are chosen equal.

If we consider again the example of case study A where the Ci
are selected so that X̄th

i = X̄mes
i , � is given by

� =
N∑
i=1

wi

(
	

|R̄mes
i − R̄thi |
R̂mes

+ (1 − 	)
|R̄mes

i − R̄thi |
R̄mes
i

)
(8)

3.3.4. An area-based metric for the deviation
All metrics considered so far are potentially unfair when a subset

of the measurement points forms a cluster. By cluster, we denote
a group of measurement points located close together with respect
to the chosen distance metric. Among the possible situations where
clusters are more likely to be encountered, we can cite the case of
on-line measurements, where similar measurement values can be
repeatedly obtained over time.

Given the previous definitions for � and assuming equalwi, a clus-
ter of measurements tends to act as a “super” measurement point,
since its weight in � is roughly proportional to the number of points
of the cluster. This reduces the impact of the other measurement
points in the estimation of �, and, as a consequence, forces the model
to match with the measurements much more in workload zone of
the cluster than in those of the remaining measurement points. This
may be an undesirable feature since, in fact, a cluster does not pro-
vide much more information than a single measurement point, other
than it corresponds to a frequently encountered operating point dur-
ing the observation period. A possible solution to address this prob-
lem consists in decreasing the weightswi of the points that belong to
a cluster. This however would require to define more precisely what
is a cluster and how to relate weights to clusters. Even though this
might be possible, we prefer an alternate simpler solution, which
relies on a new definition of the objective function and which in-
trinsically takes into account the clustering factor. This new metric
is presented below.

If the set of measurements contains clusters, we suggest to use
an original definition for the objective function �, that consists in
estimating the area between the measurement points and the the-
oretical performance curve of the model. The first step is, as before,
to associate with each measurement point Mi a coupled point Ci. For
this step, all the alternatives developed in Section 3.3.1 can be used.
Then, we consider the quadrilaterals made by the union of two con-
secutive Mi with their associated Ci, and calculate their area. Finally,
the overall value of � is simply estimated as the sum of the areas
of all these quadrilaterals. Fig. 4 illustrates this area-based defini-
tion for a case similar to case study A including a cluster. Note that
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by doing so, the workload levels located in the vicinity of the clus-
ter do not overwhelm other levels of workload in the computation
of �. Thus, this new formulation of the objective function addresses
intrinsically the risk caused by clusters since its definition takes nat-
urally into account the distance between the Mi. Since clusters tend
to appear in on-line measurements, this area-based metric appears
to be an efficient and robust choice when calibrating a model on
the fly.

4. Solving the optimization problem: computing the parameters

4.1. Derivative-free optimization

As mentioned at the beginning of Section 3, our problem is now
formulated as the minimization of a function �(�1, . . . ,�n) subject to
a set of non-linear constraints g(�1, . . . ,�n)�0. The issue is to derive
the optimization algorithm to solve it.

In continuous optimization, it is often required that the objective
function be smooth and that one be able to compute the Hessian
matrix of second derivatives. As function � can be used with differ-
ent models, we cannot be certain that � is smooth and that second
derivatives exist. Even if first two derivatives do exist, the expres-
sion of � generally relies on a time-consuming computation of the
sum of N terms, each term requiring the evaluation of the steady-
state distribution of customers in the queueing model. Therefore it
is hard to compute the derivative either formally or numerically. For
instance, we tried to solve our problem with SolvOpt, which is based
on an implementation of Shor's r-algorithm [8]. This code approxi-
mates the derivatives (and does not require the existence of second
derivatives) but we encountered poor convergence of the SolvOpt al-
gorithm: we observed that gradients were sometimes wrong, which
we believe is caused by the numerical instability in the computation
of �.

Moreover, as mentioned in Section 3.2, for some values of
(�1, . . . ,�n), we were unable to evaluate the objective function � or
the left-hand side g of the constraints. When g cannot be computed,
it means that the corresponding parameters are not feasible. Since
we do not know by how much the constraint is violated, this makes
it difficult to implement penalty or barrier methods [12, Chapter 17].

Based on these observations, the natural framework to minimize
� is the derivative-free optimization [13,15]. Indeed, methods of
this family make no assumption on the properties of the objective
function and are known to be effective when the computation of
the objective function is time-consuming. The oldest method in this
class of algorithms is the downhill simplex method (also known as
Nelder–Mead method) [11]. In our preliminary tests, convergence
was not satisfying. One reason is that the algorithm tried to evaluate
� out of its definition domain, i.e. for some (�1, . . . ,�n) that violate
the constraints.

Several routines implementing derivative-free optimization are
available on the internet. In a recent paper, Moré–Wild [10] propose
a benchmark of the algorithms, namely APPSPACK [6], NMSMAX
[7] and NEWUOA [14]. However, these tests are limited to the case
of unconstrained problems. In our case, we are dealing with non-
linear constraints. Moreover, as mentioned in Section 3, the objective
function is not defined for all values of (�1, . . . ,�n), which may be a
problem when adapting these routines. We tried APPSPACK, which
is able to deal with linear constraints, but we encountered several
convergence problems: it works well only when the initialization
point is not too far from the optimum. Our explanation is that there
are several “flat” regions that mislead the search.

Unlike these state-of-the-art algorithms, the algorithm we
present is somewhat heuristic and pragmatic. It mainly works be-
cause the objective function as well as the constraints are regular
(due to their physical origin).

4.2. Our algorithm

The general scheme of the algorithm is to start with a feasible
vector of parameters �0 = (�0

1, . . . ,�
0
n) and to iteratively improve it

until we find a sufficiently good solution. There is no general heuristic
to select the starting vector �0. The latter is randomly generated
within the possible range of each parameter. If the vector violates
at least one constraint, the random generation process is repeated
until a feasible vector is found. In practice, this Las Vegas algorithm
tends to quickly find such a feasible vector.

We now describe a step of the iterative algorithm. We denote by
�k the current feasible vector. The core idea is to locally approximate
� by a quadric function. The minimum of this function can be easily
computed and is a good heuristic candidate to improve �k.

In the following algorithm we will say that a vector, or equiva-
lently a point �, is:

• green if it satisfies all the constraints (i.e., it is a feasible vector);
• orange if the objective function � can be computed but at least

one constraint is violated;
• red if it is not in the domain of definition of � (either because �
cannot be computed or because the queueing model involved by
the vector of parameters is non-sensical).

At each iteration, there are three main steps:

(1) Randomly select p = (n2 + 3n + 2)/2 non-red points2 in the
“neighborhood” of �k, the size of this neighborhood is defined
by some vector of radii 
 = (
1, . . . ,
n).

(2) Iterate at most tmax = 10 times:
(a) If one of these points is green and improves the objective

function �, it becomes the new current point �k+1 and we
go to step 1.

(b) These p points generate a single quadric function f . Let ��

be the critical point where the derivatives of f vanish. If ��

is green and improves the objective function �, it becomes
the new current point �k+1 and we go to step 1.

(c) Randomly replace one of the p points by another one in
the neighborhood.

(3) If this step is reached, it means that �k has not been improved
in the tmax iterations of the previous loop. The neighborhood
is then reduced by decreasing one of the radii 
i. Then we go
back to step 1 unless a stopping condition is met.

An original feature of our algorithm is to consider the so-called
orange points that violate some constraints. They are only used to
build the quadric approximation function, which is especially useful
when �opt , the sought optimum, is close to the border of the set of
feasible solutions.

In our implementation, the p points chosen in step 1, are se-
lected on the surface of the ellipsoid centered at �k whose semi-axes
are of length 
1, . . . ,
n. When the size of the ellipsoid is reduced
at step 3, we first select the index i that maximizes the quantity
max{�(�k

1, . . . ,�
k
i + 
i, . . . ,�

k
n),�(�

k
1, . . . ,�

k
i − 
i, . . . ,�

k
n)}, and then de-

crease 
i in order to make the ellipsoid more isotropic. The initial-
ization of the vector 
 depends on their physical meaning (we give
more details in Section 5) and we observe that any radius 
i is non-
increasing during the execution of the algorithm.

Step 2(b) of our algorithm has two parts. First, it requires to
determine the parameters of the quadric function such that the

2 These p points are intended to generate a quadric function.
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(hyper-)surface goes through the p selected points.3 This corre-
sponds to a system of p equations with p unknowns that is solved
using a simple Gaussian elimination technique. Second, we need to
find the coordinates of the minimum on that quadric. To do so, we
calculate its derivative by solving a system of n equations with n un-
knowns, and use again a Gaussian elimination technique to find its
vanishing point.

We use two stopping criteria in our implementation. The first
one is met when the largest radius becomes smaller than a given
threshold (typically about 10−4) and the second one occurs when
�(�k) is not improved after a given number of iterations (typically
105).

5. Numerical results

5.1. The objective function

The objective function � represents a key factorwhen calibrating a
model, and, as mentioned in Section 3, its definition has to be chosen
in accordancewith the type of themeasurement data. In case study A,
since the workloads that generated the measurements are unknown,
the coupled points Ci are chosen as having the same throughputs as
the corresponding measurements Mi. Then, � is evaluated using the
multicriterion metric defined by relation (8) with a 	 of 0.5. All the
wi are set to an equal value since none of the measurement points is
assumed to carry a greater or smaller level of confidence than others.

The (non-obvious) constraints to which the model parameters
are subject include the following:

(1) maxi (X̄mes
i )�1/�

(2) ∀i, �� R̄mes
i �K�

(3) K �maxi (R̄mes
i X̄mes

i )

The first constraint comes from the fact that the average through-
put of the model cannot exceed the service rate of the queue. If a
given vector violates this constraint, at least one Mi is beyond the
model saturation threshold. As a consequence, no coupled point can
be associated with Mi (with regards to the chosen definition for �)
and the objective function cannot be computed. The vector is then
red (see Section 4.2). The second constraint has already been dis-
cussed in Section 3.2, and the third one comes from Little's law [9].
Contrary to the first case, if one of these constraints is violated, the
objective function can be computed and the resulting vector is thus
orange. The degree of relaxation, due to uncertainties in the mea-
surements (mentioned in Section 3.2), applies only to orange con-
straints. Here we arbitrarily chose to increase (resp. decrease) by 10%
the upper (resp. lower) value of the bounds appearing in constraints
(2) and (3). As a general rule, the degree of relaxation can be set to
a value comparable to the level of uncertainty associated with the
measurements.

In case study B, the measurement points include the workload.
As recommended in Section 3.3.1, the coupled points Ci are simply
defined as the model response when subjected to the same number
of sources as the associated measurement Mi. � is then computed
using the multicriterion metric defined by relation (6) with a 	 of
0.5 and wi of equal values (note that, in this particular case, the
chosen metric is equivalent to the Euclidean distance). The single
non-obvious constraint to which the model parameters are subject
is the following:

(1) ∀i, ts � R̄mes
i � (Si − 1)ts/C + ts

3 The standard form for a quadric in two dimensions is: Ax2 + By2 + Cxy+Dx+
Ey + F = 0.
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Fig. 5. The calibration found for the M/G/1/K*PS queue.

This constraint comes from the fact that the mean sojourn time of
a customer in the queue is obviously greater than the average time
to complete a request, and, the maximum expected sojourn time is
reached if a customer arrives while all the remaining Si −1 requests
are in process. This constraint is orange as � can be computed even
if a vector violates it.

5.2. Initialization of the DFO technique

First, the DFO technique, as any iterative method, requires a start-
ing vector of parameters, �0, that is feasible and consistent, i.e., green.
Multiple heuristics exist to generate such a vector. For case study
A, we ensure that �0 = (�,K) is green by selecting an initial value
of K greater than maxi (R̄mes

i X̄mes
i ) and by randomly choosing � be-

tween maxi (R̄mes
i )/K and mini (1/X̄mes

i , R̄mes
i ). Considering case study

B, the initial values of �, C and ts are randomly chosen in the in-
tervals [10−5, 10], [1, 100] and [maxi (R̄mes

i C/(Si +C−1)),mini (R̄mes
i )],

respectively. The two former intervals do not arise from model con-
straints and have been arbitrarily chosen. Note however that this
choice is not crucial as it does not restrict the final calibration of the
parameters.

Second, we need to set the initial size of the neighborhood of �0,
i.e., to dimension the initial semi-axes 
i of the ellipsoid. To the ex-
tent possible, we try to set the initial value of each 
i an order of
magnitude smaller than the expected value of the corresponding pa-
rameter. In case study A, if we assume that at least one measurement
point corresponds to a high load, we can use the limit conditions of
constraints (1) and (3), and initialize 
1 to 1/(10 maxi (X̄mes

i )) and 
2

to maxi (X̄mes
i R̄mes

i )/10. For case study B, we initialize our DFO tech-
nique with 
1 =0.1, 
2 =10, and 
3 =mini (R̄mes

i )/10. Again, the first
two values are arbitrary. The last one comes from the lower bound
of the constraint.

5.3. The calibrations resulting from the DFO technique

We now compare the model calibrated using the DFO technique
with the measurements. For case study A, the calibration process
results in values for (�,K) given by (6.95×10−3, 289.7). In case study
B, the calibration process yields the values (1.7, 152.9, 6.7 × 10−3)
for (�,C, ts). Figs. 5 and 6 show the performance of the calibrated
queueing models, together with the measurements points. As shown
by these figures, the performance of the models closely matches the
measurements. The average deviation between the measurement
points and the corresponding coupled points is of 7% for case study
A and is less than 1% for case study B.
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Recall that these calibrations have been obtained with a value
of 	 = 0.5. With 	 = 0, i.e., considering only absolute deviations in
the computation of the objective function � (see Section 3.3.3), the
DFO returns a calibrated model that better matches the last point.
Indeed this point has a much greater value of R̄ than the others, thus
having a stronger impact in �. However, the resulting model deviates
from the other points, and therefore less accurately reproduces the
behavior of the system for a large range of workload levels. On the
other hand, if the DFO is runwith 	=1, corresponding only to relative
deviations, a small measurement error on the first points (with small
values of R̄) will result in a model that gives them an excessive credit
at the expense of others.

5.4. Performance evaluation of the DFO approach

We compared the performance of our DFO algorithm, with three
standard optimization techniques, namely the simplex method [11],
APPSPACK [6] and SolvOpt [8]. Here we only present the results ob-
tained with SolvOpt as it outperforms the two other techniques. We
also compared the results with a “brute force” approach based on
explicit enumeration that simply evaluates the model for all combi-
nations of all possible values of the different unknown parameters.
This approach requires to discretize the continuous parameters and
to introduce reasonable lower and upper bounds for all of them.

The CPU time, the number of evaluations of � (denoted by #�),
as well as the rate of successful convergence, referred as to the ro-
bustness, are used as measures of algorithmic performance. Each al-
gorithm was implemented in C and was run on a 2GHz Intel Core 2
Duo processor. We ran thousands of experiments corresponding to
different starting vectors �0. Table 3 shows the average performance
of the three algorithms for both case studies A and B.

Our results indicate that our DFO algorithm gets a significantly
better rate of convergence than SolvOpt while being somewhat
slower. Furthermore, results not shown in this paper indicate that
its complexity (expressed through #�) grows reasonably with the

Measurement points
Repairman with C=1.7, ts=152.9 and λ=6.7E-03
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Fig. 6. The calibration found for the machine repairman.

Table 3
Performance of the three optimization algorithms.

Case study DFO SolvOpt Brute force

CPU #� Robust (%) CPU #� Robust (%) CPU #�

A 359ms 1418.9 100 247ms 1127.3 77 75 s 1.49 × 106

B 11.1 s 31103.0 89 6.2 s 17851.6 23 >10h 1.12 × 109

number of unspecified parameters, unlike the “brute force” approach
which is combinatorial. In fact, the complexity of our DFO algorithm
is close to polynomial since the number of points required to build
the quadric function, which determines the number of evaluations
of the objective function, increases in O(n2) with the number of pa-
rameters, n. However, this rudimentary estimation does not account
for the fact that the approximation of a complex surface by a quadric
function is likely to fail more often as the number of parameters to
calibrate increases. This forces the algorithm to generate additional
quadrics and increases the overall computational complexity of our
technique.

Despite its limited size, this study supports our general experi-
ence with the DFO algorithm presented. Unlike the existing tech-
niques we have tried, our algorithm appears easy-to-use, reasonably
fast and highly effective on all tested examples [2]. More specifically,
for queueing models with less than about 10 unspecified parame-
ters, it appears as a good trade-off between gradient-based methods
that are not robust enough (e.g., SolvOpt) and intractable systematic
approaches.

5.5. Making use of the calibrations

So far, we have shown the ability of our DFO technique to deliver
accurate calibrations of a model. Having a properly calibrated model
allows a better understanding of the system and a deeper insight
into its behavior, and provides a valuable tool for making predic-
tions. Here we illustrate some of the possible uses of our automatic
calibration tool. (Other examples can be found in [2].)

A model can be of interest to forecast performance at workload
levels for which measurements may not have been obtained. To test
the prediction capability of our approach, we use case study A and
deliberately remove one data point from the measurement set. We
run our DFO technique on the remaining measurements and test
the ability of the resulting calibrated model to predict the system
performance at the removed data point. Our results show that in all
cases, including the case for the highest load level, which is likely to
be the most difficult to reproduce accurately, the calibration yields
accurate predictions for X̄ (the deviation is less than 3%). Predictions
for R̄ are given with an error lower than 2% except for the last point.
Note however that in this latter case, the saturation threshold of the
model closely matches the measurements.

Thus, selected capacity planning issues can be addressed with
our method. For instance, in case study A, assuming a growth of 10%
in the workload in the vicinity of the second-to-last measurement
point, the model forecasts only a 3% degradation in the average so-
journ time that a request spends inside the Apache Web server. In
case study B, the queueing model can be used to estimate the per-
formance of the database system if the number of users increases
to 8. Still for case study B, the model can be used to determine the
maximum number of sources such that the mean sojourn time of
a request stays below a given threshold, e.g., for 350ms the corre-
sponding maximum number of sources is 6 (see Fig. 6).

Finally, in many cases, the proposed method can provide insight
into the system under consideration by estimating parameters that
cannot be measured. As an example, for case study A, the first
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unspecified parameter gives an estimation of the average time the
Apache Web server needs to treat a request. The value of this pa-
rameter would have been very difficult to obtain otherwise as it
represents the aggregate of several interactions between various
components of the server.

6. Conclusion

In this paper, we have presented a general, easy-to-use and ef-
ficient method for the calibration of queueing models. Given a set
of measurements collected from an operational system, the method
aims at finding the values of the model parameters that provide the
best fit between the values produced by the model and the mea-
surements data. We have formulated the search for the parameters
as a continuous optimization problem, with a particular focus on
defining a consistent objective function to quantify the “distance”
between measurements and model results. We have described in
detail a simple DFO algorithm, based on a quadratic approximation
of the objective function, to solve the optimization problem. Non-
linear constraints can be easily incorporated into our DFO algorithm,
without hampering the efficiency of the procedure. This represents a
clear advantage in our context, since most queueing models are sub-
ject to constraints. Finally, as our calibration method only requires
the evaluation of the objective function, the approach can generally
be applied to any queueing model, including those solved using a
numerical method or via simulation. However, as the overall speed
of our method depends directly on the time required to solve the
model and to compute the objective function, fastest execution will
be obtained with a speedy underlying model solution.

The proposed method has been successfully applied in several
real-life problems [2]. Its domain of application covers a wide va-
riety of systems, including computer systems and communication
networks, e.g., I/O disk controllers, processors, wired and wireless
networks. Note that our DFO technique is suitable for models with
less than ten unknown parameters, which is enough for most sit-
uations. However, if the number of parameters is higher, a more
sophisticated DFO technique with a higher computational overhead
[15], can be used within our calibration framework.

Additionally, we have presented two simple case studies, both
derived from real-life systems, to illustrate the application of the
method, its usefulness and its efficiency. Based on these two case
studies, we have shown that our DFO technique is significantly more
robust than other existing methods at the expense of only moderate
increase in its search time. This has been our experience in a number
of real case studies.

We have explored some of the possible applications of a properly
calibrated model, e.g., a better understanding of the system, a deeper
insight into its behavior, and a tool for making predictions. Further-
more, because of its simplicity and speed, the calibration method
can be used on operational systems with on-line measurements, by
continuously updating the calibration of the model and then pro-
viding prediction on the fly. This promising usage of our calibration
method is currently under investigation.
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